link to homepage

Institute of Neuroscience and Medicine

Navigation and service

Network interactions in relation to vision and action

Vision for ActionCopyright: Marcel de Haan

Grasping a cup of coffee or catching a ball requires the (fast) coordination of visual input and motor output, but also cooperation of the whole visuo-motor stream, i.e. from visual to motor areas mainly through the dorsal pathway. However, it is not yet understood how processing of visual and motor information influence each other, and how the obviously different dynamics of eye movements is transformed into arm movements.
Vision-for-action requires the combination of active vision and motor processing. In the framework of the International Lab LIA between us at INM-6 and the INT, CNRS, Marseille, France our experimental partners now record massively parallel neuronal activities from various areas along the visuo-motor pathway during a visuo-motor sequential tracking task. Spiking and LFP data are recorded with multiple Utah arrays, while simultaneously the voluntary eye and arm movements are recorded. In this collaboration we work hand in hand in preprocessing, annotating and analyzing the complex data. Our focus is on the identification of network interactions using (higher order) correlation analysis methods specifically designed for such data.


Ito J., Roy S., Liu Y., Cao Y., Fletcher M., Lu L., Boughter JD., Grün S., Heck DH. (2014). Whisker barrel cortex delta oscillations and gamma power in the awake mouse are linked to respiration. Nature Communications 5. DOI: 10.1038/ncomms4572.

Denker M., Finke R., Schaupp F., Grün S., Menzel R. (2010b). Neural correlates of odor learning in the honeybee antennal lobe. European Journal of Neuroscience 31:119–133. DOI: 10.1111/j.1460-9568.2009.07046.x.

Denker M., Riehle A., Diesmann M., Grün S. (2010a). Estimating the contribution of assembly activity to cortical dynamics from spike and population measures. Journal of Computational Neuroscience 29:599–613. DOI: 10.1007/s10827-010-0241-8.

Sharott A., Moll CKE., Engler G., Denker M., Grün S., Engel AK. (2009). Different subtypes of striatal neurons are selectively modulated by cortical oscillations. Journal of Neuroscience 29:4571–4585. DOI: 10.1523/JNEUROSCI.5097-08.2009.

Vision for Action


de Haan M., Brochier TG., Grün S., Riehle A., Barthelmy FV. (2018) Real-time visuomotor behavior and electrophysiology recording setup for use with humans and monkeys. Journal of Neurophysiology DOI: 10.1152/jn.00262.2017

Motor processing

Motor processingCopyright: Michael Denker et al. 2018 Scientific Reports Figure 3


Denker M., Zehl L., Kilavik BE., Diesmann M., Brochier T., Riehle A., Grün S. (2018) LFP beta amplitude is linked to mesoscopic spatio-temporal phase patterns. Scientific Reports 8:5200. DOI: 10.1038/s41598-018-22990-7

Riehle A., Brochier TG., Nawrot M., Grün S. (2018) Behavioral context determines network state and variability dynamics in monkey motor cortex. Front. Neural Circuits 12:52 DOI: 10.3389/fncir.2018.00052

Torre E., Quaglio P., Denker M., Brochier T., Riehle A., Grün S. (2016a). Synchronous spike patterns in macaque motor cortex during an instructed-delay reach-to-grasp task. Journal of Neuroscience 36:8329–8340. DOI: 10.1523/JNEUROSCI.4375-15.2016.

Milekovic T., Truccolo W., Grün S., Riehle A., Brochier T. (2015). Local field potentials in primate motor cortex encode grasp kinetic parameters. NeuroImage114:338–355. DOI: 10.1016/j.neuroimage.2015.04.008.

Riehle A., Wirtssohn S., Grün S., Brochier T. (2013). Mapping the spatio-temporal structure of motor cortical LFP and spiking activities during reach-to-grasp movements. Frontiers in Neural Circuits7:48. DOI: 10.3389/fncir.2013.00048.

Denker M., Roux S., Lindén H., Diesmann M., Riehle A., Grün S. (2011). The local field potential reflects surplus spike synchrony. Cerebral Cortex 21:2681–2695. DOI: 10.1093/cercor/bhr040.

Active vision

Active visionCopyright: Junji Ito et al. 2011 (modified)


Ito J., Yamane Y., Suzuki M., Maldonado P., Fujita I., Tamura H., Grün S. (2017). Switch from ambient to focal processing mode explains the dynamics of free viewing eye movements. Scientific Reports 7. DOI: 10.1038/s41598-017-01076-w.

Ito J., Maldonado P., Grün S. (2013). Cross-frequency interaction of the eye-movement related LFP signals in V1 of freely viewing monkeys. Frontiers in Systems Neuroscience 7:1. DOI: 10.3389/fnsys.2013.00001.

Berger D., Pazienti A., Flores FJ., Nawrot MP., Maldonado PE., Grün S. (2012). Viewing strategy of cebus monkeys during free exploration of natural images. Brain Research 1434:34–46. DOI: 10.1016/j.brainres.2011.10.013.

Ito J., Maldonado P., Singer W., Grün S. (2011). Saccade-related modulations of neuronal excitability support synchrony of visually elicited spikes. Cerebral Cortex 21:2482–2497. DOI: 10.1093/cercor/bhr020.

Maldonado P., Babul C., Singer W., Rodriguez E., Berger D., Grün S. (2008). Synchronization of neuronal responses in primary visual cortex of monkeys viewing natural images. Journal of Neurophysiology 100:1523–1532. DOI: 10.1152/jn.00076.2008.


  • Dr. Yukako Yamane, OIST, Japan
  • Prof. Ichiro Fujita, Osaka Univ, Osaka, Japan
  • Prof. Hiroshi Tamura, Osaka Univ, Osaka, Japan
  • Prof. Pedro Maldonado, Univ of Chile, Santago, Chile
  • Prof. Alexa Riehle, INT, CNRS, Marseille, France
  • Prof. Thomas Brochier, INT, CNRS, Marseille, France


  • Ger-Jpn Comput Neurosci Project, BMBF Grant 01GQ1114) (2012 - 2014)
  • Funding of Osaka University for international collaborations (2015 – 2016)
  • International Lab (LIA) between Research Center Juelich and INT, CNRS, Marseille (2017-)
  • Deutsche Forschungsgemeinschaft Grant DE 2175/1-1 Priority Program (SPP 1665) (2013-2015)
  • Deutsche Forschungsgemeinschaft Grant DE 2175/2-1 Priority Program (SPP 1665) (2016-2019)
  • The interdisciplinary Research Training Group MultiSenses – MultiScales (RTG2416);